

Circular economy perspectives for future end-of-life EV batteries

Eleanor Drabik & Vasileios Rizos 20 February 2018

Independent European **think tank** with the objectives of:

- Policy-oriented research
- Forum for discussion

Strong in-house research capacity and an extensive network of partner institutes throughout the world

Extensive portfolio of work in the **circular economy** field:

- CEPS Task Force on the "Role of Business in the Circular Economy"
- > Circular Impacts Horizon 2020 project
- CEPS is acting as a Knowledge Partner in the Green Growth Knowledge Platform (GGKP)

Purpose of CIRCULAR IMPACTS

-The potential evidence on the impacts of such a transition is dispersed
-The overall impacts of that transition are very unclear
-Impact assessments are developed under time pressure
-The work needs to be integrated in existing policy processes eg. the
European Semester

Authors of IAs need a quick overview on the **available evidence** → CIRCULAR IMPACTS

Future end-of-life EV batteries

Electric vehicles - key technology

Lithium-ion batteries

Materials with economic importance

Driving demand for lithium-ion batteries

The case study:

- provides evidence
- Focuses on the **potential benefits**

What will happen to this large number of batteries when they reach their end of life?

Defining the scenarios

	Scenario 1*	Scenario 2*
Collection rate within the EU	60%	85%
Lithium recycling efficiency rate	57%	94%
Cobalt recycling efficiency rate	94%	99%
Nickel recycling efficiency rate	95%	97%
Aluminium recycling efficiency rate	98%	98%

* To show examples of the economic and environmental impacts of increasing collection and recycling rates

European Commission's (2016) SET-Plan Action no.7 – Declaration of Intent "Become competitive in the global battery sector to drive e-mobility forward"

JRC (2017) report "Lithium ion battery value chain and related opportunities for Europe"

Directive (2006/66/EC) on batteries and accumulators and waste batteries and accumulators

Assumption

Assumption		Source
Lifetime of EV batteries	8 years	Tesla and Nissan warrant their batteries against malfunction and defect for 8 years.
Length of second-life	10 years	Neubauer et. al. (2015) 'Identifying and overcoming critical barriers to widespread second use of PEV batteries'
Percentage of batteries used for second-life	27%	Bloomberg New Energy Finance (2017) 'Lithium-ion battery costs and market' presentation by Claire Curry
Average weight of cobalt in an EV battery	66 g/kWh	Based on data from Bloomberg on the materials in NCA and NMC lithium-ion batteries
Average weight of lithium in an EV battery	69 g/kWh	Based on data from Bloomberg on the materials in NCA and NMC lithium-ion batteries
Average weight of nickel in an EV battery	468 g/kWh	Based on data from Bloomberg on the materials in NCA and NMC lithium-ion batteries
Average weight of aluminium in an EV battery	40 kg	Per average battery, based on figures from UBS
Price of cobalt	81,000 \$/tonne	Based on February 2018 prices from The London Metal Exchange
Price of lithium	9,100 \$/tonne	Based on 2017 price from Metalary
Price of nickel	13,625 \$/tonne	Based on February 2018 prices from The London Metal Exchange
Price of aluminium	2,138 \$/tonne	Based on February 2018 prices from The London Metal Exchange

Key messages

- Estimate approx. **1 million** end-of-life EV batteries in the year 2030
- > We estimate approx. 6 million end-of-life EV batteries in the year 2040
- Value created from raw materials recovered through recycling creates opportunities to reduce imports of these materials from outside the EU
- Increasing collection and recycling efficiency rates from Scenario 1 to Scenario 2 results in a 50% increase in recovered raw materials
- The recycling industry is a key sector where value can be created through jobs and recovered materials
- > Environmental benefits:
 - Ikg of CO₂ saved per kg of battery recycling
 - Reduction in resource depletion

eleanor.drabik@ceps.eu

@Elliedrabik

